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Painters reproduce some spatial statistical regularities of natural scenes. To what extent they replicate their
color statistics is an open question. We investigated this question by analyzing the colors of 50 natural scenes
of rural and urban environments and 44 paintings with abstract and figurative compositions. The analysis was
carried out using hyperspectral imaging data from both sets and focused on the gamut and distribution of
colors in the CIELAB space. The results showed that paintings, like natural scenes, have gamuts with elongated
shapes in the yellow–blue direction but more tilted to the red direction. It was also found that the fraction of
discernible colors, expressed as a function of the number of occurrences in the scene or painting, is well described
by power laws. These have similar distribution of slopes in a log–log scale for paintings and natural scenes. These
features are observed in both abstract and figurative compositions. These results suggest that the underlying
chromatic structure of artistic compositions generally follows the main statistical features of the natural
environment. © 2016 Optical Society of America
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1. INTRODUCTION

Spatial, spectral, and chromatic properties of natural scenes
have been studied for various purposes, for example, to inves-
tigate how the spatial properties of the visual system match the
natural environment [1–5], the spectral redundancy of natural
reflectance functions [6,7], and the efficiency of their visual
representation [8]. These studies show that spatial and spectral
regularities of nature correlate with human neural coding
[9,10]. In the color domain, similar approaches have given use-
ful information, for example, in the estimation of the color
distributions characteristic of natural scenes [11,12] and of
the number of discernible colors perceived by humans [13],
in the assessment of the frequency of natural metamers [14]
and of luminance and chromatic edges [15], or in the estima-
tion of the spatial distribution of the color of the illumination
[16]. These studies have shown that natural colors show many
regularities and are considerably constrained.

Comparative studies of the properties of natural scenes and
paintings may help in understanding the relationships between
the visual neural mechanism and art, in the same way other
studies try to clarify how the visual mechanism influences the

decision of the artists’ creative practices (see, e.g., [17–22]).
Visual aesthetics is mainly determined cognitively but the
physical properties of the artworks may give insights to the
artistic process [23].

Natural scenes and paintings seem to share important statis-
tical regularities [24,25]. For example, similarly to what happens
in natural images, art images are roughly scale-invariant [25].
Features in the paintings of American artist Jackson Pollock
revealed a scale-invariant structure that reflects the natural visual
statistics [26]. In a study with 124 images of works from the
Herbert F. Johnson Museum of Art (Cornell University) and
137 imagesofnatural scenes, similar frequency amplitude spectra
were found [24]. Analogous results were obtained by the analysis
of 200 monochrome (gray scale) graphic works of art from
Western cultures from the 15th century to the 20th century
and 208 images of natural scenes [25]. Themeasure of the energy
at different spatial scaleswas also used topredict the discomfort in
images of art and nature [27].

Why do artists reproduce in their works spatial statistical
properties characteristic of natural images? A hypothesis is that
the artists reproduce statistical regularities to which the human
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visual system is efficiently adapted [21]. In that way the artist
creates a kind of state of “aesthetic resonance” between his or
her work and the visual system of the viewer [28].

The chromatic domain is also important, and the relevance
of color in the artistic process is well known [19,29,30]. The
compositions may be determined by aesthetic and symbolic
aspects but also by physical factors, like the palette of pig-
ments and dyes available. Chromatic properties were used to
investigate the color palettes in van Gogh paintings [31] and as
additional information to support authentication studies [32].
The palette of colors of a set of digital images of the Dutch artist
were visualized in RGB and HVS color spaces. The analysis of a
set of parameters based on entropy revealed an enrichment of
the chromaticity and contrast in the later works of his career
[33]. Hyperspectral data were used to create maps of pigment
distribution in van Gogh’s paintings [34]. Statistical studies of
the colors of paintings were also carried out to evaluate some
aspects of the color rendering of paintings [35] and to estimate
aesthetic [36–38] and emotional [39] responses. Edge features,
including color and texture, were used to discriminate paintings
from photographs [40,41].

In spite of these studies, there is little data comparing
the chromatic properties of natural scenes with those of
paintings. To what extent painters replicate the color pro-
perties of natural environments is an open question. In this
work we addressed this question by analyzing comparatively
the colors of 50 natural scenes of rural and urban environments
and 44 paintings with abstract and figurative compositions
from different authors and epochs. The analysis was carried
out using hyperspectral data from both sets and focused
on the gamut and distribution of colors in the CIELAB
color space.

2. METHODS

A. Hyperspectral Imaging

Hyperspectral imaging data were obtained from natural scenes
and paintings with a system developed in-house. Detailed de-
scription of the system and acquisition methodologies is given
elsewhere for paintings [42] and natural scenes [14]. Briefly, a
spectral scan from 400 nm to 720 nm, every 10 nm, was carried
out with a fast-tunable liquid-crystal filter coupled with a digital
camera. The spatial resolution of the camera was 1344 pixels ×
1024 pixels and the field of view was approximately 6.9° × 5.3°.
Hyperspectral data were calibrated using the spectrum of the
light reflected from a gray reference surface placed in the scene.
The reference was a flat surface painted with Munsell N7 matte
emulsion paint. The estimate of the spectral reflectance of each
pixel of the image was obtained after corrections for dark noise,
spatial nonuniformities, and stray light. The spectral radiance
from each pixel was then computed from the corresponding
spectral reflectance assuming the standard illuminant CIE
D65 [43]. The spectral accuracy of the hyperspectral imaging
in recovering spectral reflectance factors of colored samples
is within 2% [14,44].

1. Natural Scenes

The 50 natural scenes analyzed were acquired in the Minho
region of Portugal. The scenes were of rural and urban

environments and contained both close-ups and distant views.
Rural scenes contained natural elements such as dark terrain,
trees, grass, ferns, flowers, rocks, and stones, and urban scenes
contained buildings and painted surfaces. Detailed description
of the database is given elsewhere [13,14].

2. Paintings

Twenty-four of the paintings analyzed belong to the collection
of the Center of Modern Art of Calouste Gulbenkian
Foundation (CAM-FCG) in Lisbon and were realized by
the modernist Portuguese artist Amadeo de Souza-Cardoso
between 1911 and 1917 (Fig. 1). Amadeo de Souza-Cardoso
was extensively studied in previously works and the analysis of
the materials and techniques revealed that the color is one of
the most important features of his paintings [45,46]. The other
20 paintings belong to the collection of the Museu Nogueira da
Silva in Braga. The paintings were from several epochs and
artists and represent different subjects. More detailed informa-
tion concerning these paintings is given elsewhere [35,42].
These 44 paintings were selected to minimize bias to a specific
artist or painting style. To facilitate reading, the term “figura-
tive” is used here to indicate the group of compositions with a
realistic and accurate depiction of nature or of contemporary
life; the term “abstract” is used to indicate the paintings that
do not fall into the figurative group.

B. Data Analysis

The analysis of the chromatic properties of the natural scenes
and paintings was carried out in the CIELAB color space. From
the estimates of the spectral radiance from each pixel, and as-
suming the standard illuminant CIE D65, the corresponding
color was computed by converting radiance into tristimulus val-
ues for the CIE 1931 standard colorimetric observer and then
converting into the CIELAB color space [43]. The properties
analyzed were the gamut and the frequency of occurrence of the
discernible colors.

1. Gamut

The color gamut of each painting and natural scene was ob-
tained by projecting the colors in the CIELAB �a�; b�� plane.
Only the colors that appeared more than 10 times in each
image were considered in the analysis.

For each painting and natural scene, the limits of the gamut
and its shape and orientation were characterized by the proper-
ties of an ellipse fitted to the data based on a least squares cri-
terion. The ellipses calculated from the paintings and natural
scenes cover on average 88% of the data points (standard
deviation 2%). Axis ratios, angular position of the major axis,
and areas were estimated. As an example, Fig. 2(b) shows the
gamut and ellipses fitted for one natural scene (top row) and
two paintings (middle and bottom rows).

2. Frequency of Occurrence of Discernible Colors

One way to characterize a distribution of colors is to identify
the discernible colors present on the scene and to count how
many times each occurs. Desaturated colors are, in general,
more likely to appear than saturated ones, which are rare.
A distribution like that has a maximum in the white region
and decreases toward the periphery of the color space. Here,
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we characterized the color distribution in a different way, by
computing the fraction of discernible colors expressed as a
function of the number of times of occurrence in the scene
or painting. Thus, we estimated the number of discernible
colors and how many times each occurs, that is, the number
of pixels that have that color. For the computation of the dis-
cernible colors the projection of the color volume in the
CIELAB �a�; b�� plane was segmented into unitary squares
and all colors inside each square were counted as one
[13,47]. The number of times of occurrence is the number
of individual pixels inside each square. Figure 3 illustrates
the procedure. To better visualize the meaning of such analysis,
imagine two extreme cases. In one case, there is only one color
repeated in all pixels, like a uniform painting—all pixels will be
represented in one square on Fig. 3. In another case, all colors
of the gamut occur and with the same frequency—each square
of Fig. 3 will have the same number of points. A real scene is
expected to have a pattern somewhere in between these extreme
situations. The question is what those patterns are and whether
they are regular from scene to scene. Figure 2(c) shows an ex-
ample for a natural scene (top row) and two paintings (middle
and bottom rows). Interestingly, the fraction of discernible col-
ors as a function of the occurrence is well described by a power
law. Power laws are scale invariant and describe many natural
properties [48], in particular, spatial properties of natural scenes
[49]. Thus, these types of color distribution also show scale
invariance in the color domain. To characterize each distribu-
tion a power function was fitted and the corresponding slope
obtained.

3. RESULTS

A. Gamut Analysis

Figure 4 shows the color gamut for the 50 natural scenes (light
gray dots) and for the 44 paintings (medium gray dots for
Amadeo’s paintings and dark gray for the paintings of the
Museu Nogueira da Silva in Braga). The three gamuts are elon-
gated in the yellow–blue direction. The gamut of the 44 paint-
ings is smaller than that of natural scenes, but they have a
comparable distribution. Moreover, the means of the two ga-
muts are very similar and close to the center of the CIELAB
�a�; b�� plane: (1, 14) for the paintings and �−1; 11� for the
natural scenes.

The analysis of the gamut of the individual paintings may
also give stylistic information. The presence of data clusters in
the CIELAB �a�; b�� plane is related with the presence of an
almost monochromatic areas, without gradients of colors. In
the case of the painting analyzed in Fig. 2 (bottom row),
the cluster separate from the main group corresponds to the
light yellow areas. This effect is quite evident in the geometric
compositions; see, for example, the 15th painting in Fig. 1. The
gamut of this painting in the CIELAB �a�; b�� plane is char-
acterized by the presence of seven clusters of data corresponding
to the main colors used in the composition.

Figure 5 shows the data obtained from the ellipses fitted to
the colors of each scene and painting. The distributions of the
areas, axis ratios, and angles are represented separately for the
set of natural scenes and paintings. Figure 5(a) shows the two
distributions for the areas expressed in CIELAB units. Symbols

Fig. 1. Color thumbnails of the 24 paintings of Amadeo de Souza-Cardoso analyzed in this work (Photographic Archive CAM-FCG). The
paintings are from the collection of the CAM-FCG in Lisbon. The other 20 paintings analyzed are from the collection of the Museu
Nogueira da Silva, Braga, and are described in detail elsewhere [35,42]. For the analysis all paintings were digitalized with a hyperspectral system.
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represent the data from the analysis and the lines represent the
best-fitted exponentials to the data. The range of areas of
the ellipses for the two classes of images is comparable. The
range for natural scenes is 210–6,613 (average 1,226) and
for the paintings 124–5,610 (average 1,338). Fractions of
92% for the natural scenes and 91% for the paintings are
within the range 120–3,100. The distributions are therefore
analogous. Similar ellipse areas mean similar gamut limits
but not necessarily similar gamuts because the colors are not
uniformly distributed within each ellipse. As shown in Fig. 4
the limits of the gamut of the natural scenes are larger than that
of the paintings, despite the areas of the ellipses calculated for
the two groups of images being comparable.

Figure 5(b) shows the distributions of the axis ratios.
Symbols represent data from the analysis and the lines the
best-fitted Gaussian distributions. There are also strong simi-
larities between natural scenes and paintings in this case. The
mean value calculated for the natural scenes is 0.51 and 0.58 for
the paintings (0.56 for figurative paintings and 0.6 for abstract

paintings). The distribution for the paintings is slightly shifted
toward higher values when compared to the natural scenes. In
other words, the distribution of colors in natural scenes is
slightly more asymmetrical than in paintings. This effect is,
however, small.

Figure 5(c) shows the distributions of angles of the ellipses.
Symbols represent data from the analysis and the lines the best-
fitted Gaussian distributions. The angle is defined by the major
axis of the ellipse and the positive axis of the coordinate
CIELAB a�. The values from 0° to 90° indicate an ellipse whose
major axis is rotated to the right of coordinate b�, like in the
paintings represented in Fig. 2(b) (middle and bottom rows).
Values from 90° to 180° indicate an ellipse rotated toward the
left of coordinate b�, like the case of the natural scene presented
in Fig. 2(b) (top row). The Gaussian curve fitting for the natu-
ral scenes is shifted toward higher values comparing with that of
the paintings. Twenty-eight of the 50 images of natural scenes
show an angle higher that 90°, while the same feature was ob-
served in only 5 of the 44 paintings. The mean angle for the

Fig. 2. Examples of gamut and frequency of occurrence of discernible colors for one natural scene and two paintings. The natural scene (top row)
is from the Minho region of Portugal; the figurative painting (middle row) is from the collection of the Museu Nogueira da Silva in Braga, and the
abstract painting (bottom row) is from Amadeo de Souza-Cardoso and belongs to the collection of the CAM-FCG in Lisbon. (a) Color images of the
scenes and paintings. (b) Color gamut in the CIELAB �a�; b�� plane and corresponding best-fitting ellipses covering 88% of the data points.
(c) Representation of the fraction of discernible colors expressed as a function of the number of times of occurrence in the scene or painting.
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natural scenes is 92° and 66° for the paintings (72° for the fig-
urative and 58° for the abstract paintings). This is not a minor
effect and the color gamut of the paintings is more tilted to red
than in the natural scenes. This tilt effect in the ellipses does not
mean that the greens are less used than the reds; rather, it means
that the saturation balance favors reds over greens. Moreover it
is important to note that representation of vegetation, trees, and
natural landscapes does not necessarily imply a color gamut ro-
tated in the same direction of the natural scenes (>90°). In the

paintings database there is one painting depicting a verdant
riverbank and the angle of the ellipse is 76°.

To confirm this angular effect we plotted the same informa-
tion against two other databases of natural scenes. The dashed
line represents the Gaussian fitting to the data obtained with a
commercial hyperspectral camera at Harvard [50] and the
pointed line represents best-fitted Gaussian to the data ob-
tained with an in-house system at Bristol [1]. Both of these
two distributions confirm the effect found here.

B. Frequency of Occurrence of Discernible Colors

Figure 6 shows the distribution of the slopes obtained by fitting
power laws to the data represented in Fig. 2(c). Symbols re-
present data points and the lines best-fitted Gaussian distribu-
tions to the data points. The four images presented in the
bottom part of Fig. 6 are examples of the extremes of the slope
range. Lower slope values indicate the presence of few colors
and almost monochromatic areas (images on the left); higher
values of slope indicate more colors and less uniform areas (im-
ages on the right). Paintings and natural scenes have similar
slope distribution, suggesting a common statistical distribution
of colors. The mean slope calculated for the frequency of color
occurrence in the natural scenes is −1.32 and −1.29 for the
paintings (−1.28 in the figurative and −1.3 in the abstract
paintings).

4. DISCUSSION AND CONCLUSIONS

Natural scenes and paintings have gamuts with shapes similarly
elongated in the yellow–blue direction but more tilted to the
red direction in paintings. It was also found that the fraction of
discernible colors, expressed as a function of the times of oc-
currence in the scene or painting, is well described by a power
law with similar distribution of slopes in a log–log scale. These
features are observed in both figurative and abstract composi-
tions. The elongation of the gamut in the yellow–blue direction
is well known for natural scenes [11,12,44]. It is intriguing,
however, that painters reproduce almost exactly the same
statistical pattern.

Why do natural scenes and paintings share so many aspects
except for the orientation of the gamut? It could be argued that
our dataset of natural scenes is biased because of its size and
nature. Yet, this effect is replicated with other independent da-
tabases of natural scenes and therefore it is unlikely to be ex-
plained by that aspect. It could also be argued that this is related
to the nature of the representation or to the subject represented
in the paintings set. It was observed that the mean angle for the
figurative compositions is slightly higher than for abstract
paintings (72° and 58°, respectively). Four out of the five paint-
ings that show a considerable green component are figurative
and just one is a nonfigurative painting. On the other hand, in
the database there are 19 other figurative representations that
do not have the same relevance in the green component. A
strict correlation between the subject represented in the figu-
rative paintings and the orientation of the gamut was not ob-
served. The representation of vegetation, for example, does not
necessarily imply a gamut oriented as in natural scenes.

The results presented here suggest that the underlying chro-
matic structure of the compositions generally follows the main

Fig. 4. Total color gamut in the CIELAB �a�; b�� plane for the 50
natural scenes (light gray dots), 24 paintings of Amadeo de Souza-
Cardoso (medium gray dots), and 20 paintings from the collection
of the Museu Nogueira da Silva in Braga (dark gray dots).

Fig. 3. Diagram to illustrate the procedure used to estimate the
number of discernible colors and their frequency. Each gray circle rep-
resents one pixel. The projection of the color volume in the CIELAB
�a�; b�� plane was segmented into unitary squares and all colors inside
each square were counted as one [13,47]. The number of times of
occurrence is the number of pixels inside each square. The fraction
of discernible colors was expressed as a function of the number of times
of occurrence in the scene or painting [see Fig. 2(c)].
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statistical features of the natural environment. Painters mimic
the chromatic structure of natural scenes except for the balance
between greens and reds. We conjecture two possibilities to
explain the effect. They are related to the material and to
the aesthetic of the painting. In the first case the limits imposed
by the dyes and pigments available to the painters may influ-
ence the gamut of their compositions. Moreover, scientific
analyses have detected many cases of chromatic alterations
in green pigments. Is also known that there is a tendency of
copper- and arsenic-based green pigments, such as Verdigris
and Emerald green, to degrade and turn darker when used
in oil media [51,52]. The second possibility is related to aes-
thetic choices made by the artist. For example, color preference
is influenced by saturation and this influence depends on hue
[23]; the imbalance between the red and green may be related
to this phenomenon. Whether the gamut orientation is a
voluntary option or not is still an open question.
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