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Abstract 
Common descriptors of light quality fail to predict the 

chromatic diversity produced by the same illuminant in different 
contexts such as images of natural scenes. The aim of this paper 
was to introduce a new index, capable of predicting illuminant-
induced variations in the chromatic diversity off natural scenes. 
The spectral reflectance of each pixel of 50 images of natural 
scenes obtained using a hyperspectral imaging and the spectral 
reflectance of 1264 Munsell surfaces were converted into the 
CIELAB color space for each of the 55 illuminants and 5 light 
sources. The CIELAB volume was estimated by the convex hull 
method. The number of discernible colors was estimated by 
segmenting the CIELAB color volume into unitary cubes and by 
counting the number of non-empty cubes. High correlation was 
found between the CIELAB volume occupied by the Munsell 
surfaces, the number of discernible colors and CILEAB color 
volume of the colors of natural scenes. These results seem to 
indicate that a new illuminant chromatic diversity index based on 
natural scenes could be defined using the CIELAB volume of the 
Munsell surfaces. 

Introduction 
The spectral composition of the lighting or colored filters 

used in illumination can determine the quality of the chromatic 
experience for normal observers viewing artistic paintings or 
natural scenes [1-7]. 

Typically light sources are characterized by how much the 
colors produced approach those produced by daylight. This 
property, quantified by the color rendering index (CRI) [8], has, 
however, a number of limitations [8-10] and other quality 
measures have been considered [11-13]. In particular, the gamut 
area index (GAI) [14] that produces instead of direct color 
comparison an estimation of the extension of the chromatic gamut 
produced by a specific light source and, indirectly, measures the 
chromatic diversity produced. The CRI and the GAI indices had 
low correlation with the chromatic diversity expected in more 
complex scenarios as hyperspectral images of art paintings or 
natural scenes [15-16], making them inadequate to estimate the 
effect of the illumination in the chromatic diversity of such scenes. 
The number of discernible colors is a possible estimation of the 
chromatic diversity of complex scenarios [17-19]. 

A new metric of the effect of illuminants on the chromatic 
diversity of complex scenarios is necessary, if possible one that 
uses an easily available colorimetric data collection. 

The main goal of this paper was to test the possibility of a 
chromatic diversity index based on Munsell surfaces but extensible 
to more complex scenarios like natural scenes. The colors of 1264 
Munsell surfaces and 50 hyperspectral images of natural scenes 
were simulated under 60 illuminants or light sources and their 
effect in the CIELAB color volume and the number of discernible 
colors estimated as descriptors of chromatic diversity variations. 

Methods  
Figure 1 represents the images used in the present work. Data 

was acquired over the range 400-720 nm at 10 nm intervals using a 
fast-tunable liquid-crystal filter (Varispec, model VS-VIS2-10-
HC-35-SQ, Cambridge Research & Instrumentation, Inc., 
Massachusetts) and a low-noise Peltier-cooled digital camera with 
a spatial resolution of 1344×1024 pixels and 12-bit output 
(Hamamatsu, model C4742-95-12ER, Hamamatsu Photonics K. 
K., Japan), (for more details on the hyperspectral system see [20]). 

 

 
Figure 1 - Thumbnails of some of the 50 scenes analyzed in this study.  

Hyperspectral data was calibrated using the spectrum of the 
light reflected from a gray surface present in the scene measure 
with a telespectroradimeter (SpectraColorimeter, PR-650, 
PhotoResearch Inc., Chatsworth, CA) just after image acquisition. 
The spectral radiance from each pixel of the image was then 
obtained after corrections for dark noise, spatial non-uniformities, 
stray light, and chromatic aberrations (for more details on these 
corrections see [20]). The reflectance information was obtained 
from the radiance data by using the illuminant information 
reflected on a gray reference presented in the scene at the time of 
acquisition, and by assuming that there were no illuminant spatial 
variations. 

Munsell surfaces reflectance information was used as 
available at the Spectral Database, University of Joensuu Color 
Group (http://spectral.joensuu.fi/). 

CIE Illuminant A and C and 21 D illuminants (CCT in the 
range 25,000 K to 3,600 K in steps of 1190.3 K) were used as 
daylight illuminants [21], 27 FL illuminants (FL1, FL2, FL3, FL4, 
FL5, FL6, FL7, FL8, FL9, FL10, FL11*, FL12, FL3.1, FL3.2, 
FL3.3, FL3.4, FL3.5, FL3.6, FL3.7, FL3.8, FL3.9, FL3.10, FL3.11, 
FL3.12, FL3.13, FL3.14, and FL3.15) as fluorescent lamps and 5 
HP illuminants (HP1, HP2, HP3, HP4 and HP5) as high pressure 
discharge lamps. Five white LEDs (LXHL-BW02, LXHL-BW03, 
LXML-PWC1-0100, LXML-PWN1-0100 and LXML-PWW1-
0060 from Luxeon, Philips Lumileds Lighting Company, USA) 
were used as light sources. These white LEDs were chosen 
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because they are widely used and are commercialized by one of the 
main illumination companies and Figure 2 represents their 
normalized spectral power distribution. 

The CIELAB color volume for each natural scene image and 
Munsell data was estimated assuming each reflectance rendered 
under the test illuminant considering the CIE 1931 Standard 
Colorimetric Observer [21]. 

The number of discernible colors was estimated by 
segmenting the CIELAB color volume of the natural scene into 
unitary cubes and by counting the number of non-empty unitary 
cubes, assuming that all the colors that rely inside the same cube 
could not be discernible. 

The correspondent volume was estimated by using a convex 
hull algorithm by computing the smallest convex polyhedron 
containing all of the points of the CIELAB color volume, and by 
computing its volume. 

Results 
Figure 3 represents the comparison of the CIELAB color 

volumes obtained for the Munsell surfaces and the number of 
discernible colors for natural scenes as open circles and the 
CIELAB color volume of Munsell surfaces and the CIELAB color 
volume of natural scenes as open squares. Each point represents a 

particular illuminant with data averaged across scenes. Straight 
lines represent unweighted linear regressions to each 
correspondent data set, and quantities the proportion of variance R2 
accounted for in the regression for each case. Scales are divided by 
a factor of 10 000 for representation purposes. 

Figure 4 to Figure 7 represents the same comparisons and data 
as Figure 3 with illuminant families separated as Daylight, 
Fluorescent and High Pressure discharge lamps illuminants and 
LED light sources, respectively 

A very good degree of correlation between the CIELAB 
volumes of Munsell surfaces and the number of discernible colors 
of natural scenes and the CIELAB volumes of Munsell surfaces 
and the CIELAB volumes of the colors of the natural scenes was 
found for Daylight, Fluorescent and High Pressure discharge lamps 
illuminants. A considerable degree of correlation was also found 
for the number of discernible colors and the CIELAB volumes of 
Munsell surfaces when rendered under LED light sources but a 
poor correlation for the CIELAB volumes of the colors of the 
natural scenes and the CIELAB volumes of Munsell surfaces was 
found for LED light sources. In general, as represented in Figure 3, 
there is a very good correlation between the CIELAB volume of 
the Munsell surfaces and the CIELAB volumes of the colors of the 
natural scenes, and a good correlation for the CIELAB volume of 
the Munsell surfaces and the number of discernible colors of 
natural scenes. 

Figure 2 - Normalized spectral power distribution of the 5 white LEDs used 

(Luxeon, Philips Lumileds Lighting Company, USA). 

Figure 3 – Average CIELAB color volume (open squares) and number of 

discernible colors (open circles) of natural scenes as a function of the CIELAB 

volume of Munsell surfaces for all illuminants database. Straight lines 

represent unweighted linear regressions to each correspondent data set, and 

quantities the proportion of variance R2 accounted for in the regression for 

each case. 
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Figure 4 – Same as Figure 3 but for Daylight illuminants only. 

 
Figure 5 – Same as Figure 3 but for Fluorescent illuminants only. 

Conclusion and comment 
In this work hyperspectral data of images of natural scenes 

and reflectance data of Munsell surfaces were used to estimate the 
chromatic variations between the two sets of data when rendered 
under different illuminants. A good correlation between the two 
data sets was found regardless of the different origins of the two 
databases. Such a result seems to indicate that the computation of 
the volume of the Munsell surfaces colors under a test illuminant is 
a good predictor of the effect of that illuminant in the chromatic 
variation of more complex scenes. 
 

 
Figure 6 – Same as Figure 3 but for High Pressure discharge illuminants only. 

 
Figure 7 – Same as Figure 3 but for Led Light Sources only. 

All the computations were done using the CIELAB color 
space, well known for its non-uniformities in particular in blue and 
gray areas [22-23]. Also, the segmentation of the color volume into 
unitary cubes assumes that all colors inside the same cube could 
not be distinguished, but in fact some pairs have a color difference 
∆E*ab > 1 which are in fact discernible. The use of unitary spheres 
to segment the color volume can partially overcome this limitation, 
but some studies [19] suggests that relative estimates of the 
number of discernible colors are robust in relation to other 
methodologies that can be used to compute with great accuracy the 
number of discernible colors. The use of other uniform color 
spaces like de DIN99d [24] or the CIECAM02 [25] is not expected 
to produce significant variations in the results. 

The number of discernible colors as a descriptor of the 
chromatic diversity was not used in the Munsell colors as the 
influence of different illuminants does not change considerably the 
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number of discernible colors as they all are colorimetric 
distinguishable. 

The good correlation between the estimated volume for the 
Munsell colors and for the natural scenes wasn’t completed 
expected as natural scenes color volumes are not completely 
uniform as the distribution of the Munsell colors. Non-uniform 
empty spaces exist in the natural scenes color volume, ignored by 
the convex hull method. These color volumes were measured up 
only to compare equal quantities as the comparison of the number 
of discernible colors and the volume occupied by the Munsell 
colors could have been affected by the described empty volumes. 

Comparisons of the number of discernible colors as an 
illuminant chromatic diversity descriptor with classical methods as 
the CRI and the GAI were done elsewhere [15-16]. 

Further testing should be done to understand the poor 
correlation under the LED light sources, and the influence of this 
chromatic diversity descriptor in color deficiency observers. 

Despite these limitations the data presented here suggests that 
the chromatic variations produced by different spectral illuminants 
in natural scenes could be predicted using the Munsell surfaces 
variations under the same illumination.  
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