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Abstract 
The relationship between the spectral composition of light 

sources and the visual appearance of rendered scenes is a 
matter of practical relevance and assumes today particular 
significance with the advent of light sources of almost arbitrary 
spectral distribution, like modern LED based lighting. This 
relationship has only been studied for specific illuminants, like 
daylights, and systematic studies with other light sources are 
necessary. The aim of this work was to address this issue by 
studying, computationally, some chromatic effects of metamers 
of daylight illuminants. For each daylight with correlated color 
temperature (CCT) in the range 25 000 K – 4000 K a large set 
of metamers was generate using the Schmitt’s elements 
approach. The metamers set was parameterized by the absolute 
spectral difference  to the equi-energy illuminant E and by the 
number of non-zero spectral bands. The chromatic effects of the 
metamers were quantified by the CIE color rendering index 
CRI and by the CIELAB color gamut generated when rendering 
the Munsell set. It was found that although CRI decreases with 
, that is, as the illuminant spectrum becomes spectrally more 

structured, the largest values for the color gamut could be 
obtained only for large values of . Furthermore, the 
relationship between color gamut and number of non-zero 
bands showed that the largest gamuts were obtained with a 
small number of spectral bands. Thus, spectrally structured 
metamers produced low CRI but larger color gamuts, a result 
suggesting that appropriate spectral tuning may be explored in 
practical illumination when obtaining large chromatic diversity 
may be important. 

 
 

Introduction 
Modern LED based lighting can have almost arbitrary 

spectral distribution [1, 2] and are increasingly present in the 
market and available to the general public. Studies of the visual 
effects of light sources have concentrated more on standard 
daylights [3-6] and some LEDs [7, 8]. In particular, empirical 
studies of the chromatic effects of LEDs have suggested a 
number of limitations on color rendering [7, 9]. These studies, 
however, used specific LEDs and their results are difficult to 
generalize to other lights sources.  

The color quality of a light source is typically  evaluated 
by the color rendering index (CRI) [10, 11]. This is a quantity 
that compares the colors of a set of surfaces rendered under the 
given illuminant with the colors of the same surfaces under the 
reference illuminant, a daylight or blackbody radiation. The 
limitations of the CRI are well known [12-15] and other 
descriptors of the visual quality of a light source were 
suggested [16-18]. To obviate the need for a reference 
illuminant, a method based on the volume of the object-color 
solid was recently proposed [19]. Another index introduced 
recently was the Gamut Area Index (GAI) [20], a measure of 
the extension of the color gamut generated. In the present work 
the characterization of the chromatic effects of the illuminants 

was quantified by the CRI and by a generalization of the index 
GAI to quantify the gamut associated to each illuminant.  

The aim of this work was to study, computationally, the 
relationships between illuminants with almost arbitrary spectral 
profile and their chromatic effects.  Metamers of daylight were 
the class of illuminants selected. For each daylight with CCT in 
the range 25 000 K – 4000 K a large set of metamers was 
generate using the Schmitt’s simple elements approach [21]. 
The metamers set for each CCT was parameterized by the 
absolute spectral difference  to the equi-energy illuminant E 
and by the number of non-zero spectral bands. The chromatic 
effects of the illuminants were quantified by the CRI and by the 
CIELAB color gamut generated when rendering the Munsell 
set.  

 

Methods 
For a given colorimetric observer defined by 3 color 

matching functions, there is an infinite number of illuminants 
that produce the same XYZ tristimulus on a white surface [22].  
These constitute the metamer set. There are several ways of 
generating metamers [21, 23-25]. Here, for simplicity, we 
choose the Schmitt’s simple elements approach [21]. A 
metamer set of real positive functions F can be described by a 
convex hyperpolyhedron volume in an M-dimensional space, 
where M is the number of spectral bands considered. The 
apexes of that hyperpolyhedron Sj are functions that have at 
most 3 non-zero coordinates, that is, no more than 3 spectral 
bands. Any element if of the set can be written as a positive 
barycentric combination of simple elements, i.e., for any 

Ffi ∈   there is at least one set of N   ≤ M positive numbers 
αj such that: 

 
 

where, 

 
 Considering δi the absolute spectral difference 

between if and the equi-energy illuminant E defined by the 
formula, 

 
a total of 10,000 metamers were generated for each daylight in 
the CCT range 25 000 K — 4000 K by choosing the weights αj  
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Figure 1. Two examples of metamers of D65. The black line represents a 
metamer spectrally different from E and the grey line a metamer spectrally 
similar to E. 
 
 
such that the distribution of δi was approximately uniform over 
a reasonable range. All metamers were normalized in energy 
and were generated for the spectral range 400 nm - 720 nm, 
with 5 nm spectral resolution. Thus, the number of spectral 
bands M was 65. Note that because E is a uniform spectrum, δi 
is a measure of how much spectrally structured fi is. The 
colorimetric observer used was the CIE 1931 Standard 
Colorimetric Observer.  

For each metamer the general color rendering index CRI 
was computed accordingly to CIE [10]. To quantify the color 
gamut generated by each case, the CIELAB color volume 
occupied by the set of 1269 samples from the Munsell book of 
Color [26] was computed. The spectral reflectance set were 
used as tabulated by the University of Joensuu Color Group 
[27]. The set was assumed rendered by each metamer and the 
coordinates of each Munsell sample were computed in 
CIELAB color space. The volume was then computed using a 
three-dimensional convex hull routine. Note that this method 
gives the volume inside the envelope defined by the Munsell 
surfaces in the periphery of the set. This quantity is strongly 
correlated with the chromatic diversity or number of discernible 
colors produced in natural scenes and can be used as a 
Chromatic Diversity Index (CDI) [28].   

  For illustration purposes Figure 1 shows two metamers of 
D65. The black line represents a metamer spectrally different 
from E and the grey line a metamer spectrally similar to E.  
Figure 2 represents for a selection of metamers of D65 the 
absolute spectral difference to the equi-energy illuminant E δ 
expressed as a function the number of non-zero spectral bands. 
As δ decreases the number of non-zero spectral bands increase, 
that is, the spectra become less structured. Data for metamers 
sets of other daylight illuminants with different CCTs show 
similar patterns.  

 
 

Figure 2. Absolute spectral difference to the equi-energy illuminant E 
expressed as a function the number of non-zero spectral bands. Data for 
a selection of metamers of D65. Data for metamers sets of other daylight 
illuminants with different CCTs show similar patterns. 

 
 

Results 
Figure 3 represents the CRI expressed as a function of δ 

for a selection of metamers of D65. As expected, the maxima 
and minima CRI decrease as the illuminant becomes more 
structured, that is, less similar to the equi-illuminant E. Data for 
metamers of other daylights show similar pattern. This 
dependence of CRI with δ means that the colors produced by 
daylight illuminants cannot be reproduced by irregular or 
structured spectra. Yet, some spectra with δ values around 2,0 
can still produce relatively high indices of the order of 80 
equivalent to some fluorescent sources.  

Figure 4 represents the volume of the Munsell set 
expressed as a function of δ for a selection of metamers of D65. 
Data for the other daylights show similar pattern. The range of 
volumes obtained increases with δ and the maximum and 
minimum volumes are obtained for large spectral differences. 
The pattern of results presented in Figure 3 and Figure 4 
suggests that large volumes and high CRI cannot be obtained 
by the same illuminant. In Figure 5 the volume of the Munsell 
set is expressed as a function of the CRI. High values of the 
CRI correspond to medium values of the volume and large 
volumes correspond to low CRI. 

Figure 6 shows the volume of the Munsell set expressed as 
a function of the number of non-zero spectral bands of the 
metamer set of D65. Data for other daylights show similar 
pattern. As the number of non-zero spectral bands increases the 
range of volumes that can be obtained decreases. The larger 
volume is obtained with metamers with a small number of 
spectral bands. Or, in other words, metamers spectrally similar 
to E generate only moderate volumes and only more spectrally 
structured illuminants generate larger volumes.  

 
 
 

0 30 60

0,7

1,4

2,1

δ,
 a

bs
ol

ut
e 

sp
ec

tra
l d

iff
er

en
ce

 to
 E

non-zero spectral bands
400 500 600 700

0,0

0,2

0,4

0,6

0,8

1,0

no
rm

al
iz

ed
 p

ow
er

 s
pe

ct
ra

wavelength (nm)

46 ©2010 Society for Imaging Science and Technology



 

0 30 60

0,0

2,0x105

4,0x105

6,0x105

M
un

se
ll 

vo
lu

m
e

non-zero spectral bands

 
Figure  3.  CRI expressed as a function of δ for a selection of metamers 
of D65.  
 
 

 
 
Figure 4. Volume of the Munsell set obtained with each illuminant 
expressed as a function δ. Data for a selection of metamers of D65. 
 

 

 

 

 

 

 

Figure 5. Volume of the Munsell set obtained with each illuminant 
expressed as a function CRI. Data for a selection of metamers of D65.  

Figure 6. Volume of the Munsell set expressed as a function of the 
number of non-zero spectral bands of the metamer set of D65. 

To illustrate the visual effects of a set of metamers of D65 
Figure 7 shows the color thumbnails of one artistic painting 
under D65 and under two different metamers of D65. The 
painting shows different colors in all cases. The one at the 
button displays more colors than the others but the colors may 
be seen as less natural.  
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Figure 7. Color thumbnails of one artistic painting under D65 (upper 
picture) and under two metamers of D65 (middle and lower picture). 

Conclusions and comments 
In this study the relationships between illuminant spectral 

structure, CRI and color gamut were explored, computationally, 
using metamer sets of daylight illuminants. It was shown that 
CRI tends to decreases as the spectrum becomes less uniform 
although values of CRI close to 80 can be obtained with 
structured spectra. The color gamut, quantified by the color 
volume in CIELAB enclosed by the Munsell set, has its 
maximum for highly structured spectra; high CRI and large 
gamuts cannot be obtained by the same light sources. 

When CRI and color gamuts were expressed as a function 
of the number of non-zero spectral bands as an alternative 
measure of the spectral structure, it was found that spectra with 
a small number of non-zero spectral bands produce the 

maximum color gamut. Thus, one of the main results of this 
work is the theoretical possibility of producing large color 
gamuts with light sources with a small number of spectral 
bands.  This result is consistent with the results obtained for the 
effects of colored filters in the perceived chromatic diversity of 
natural scenes where a lens with transmittion in three broad 
spectral bands produced the maximum number of discernible 
colors [29]. 

The two types of aspects approached here are both 
relevant to color rendering, one refers to what colors appear 
and the other to how many colors appear. These two aspects 
have been considered often in color rendering research [15, 30, 
31] and represent complementary information about the effects 
of light sources on the rendering scenes and together may  be 
useful in designing new light sources for optimal chromatic 
discrimination.  

High colour rendering index and large chromatic diversity 
are somewhat incompatible, but whether observers prefer 
daylight fidelity or good chromatic diversity is open to 
question. New developments in defining improved ways of 
computing the colour rendering index [32] may change the 
pattern described here and improve the compatibility between 
fidelity. 

 But why do spectra with a small number of spectral bands 
produce large gamuts? This seems to be inconsistent with 
experimental work on chromatic effects of LEDs [7, 9] but may 
be explained by the spectral position of the bands: only three 
spectral bands appropriately localized in the visible spectrum 
may stimulate the cone photoreceptors optimally for maximum 
chromatic diversity or color gamut. On the other hand, a small 
number of spectral bands may produce also low chromatic 
diversity, as show in Figure 6. This is because of the position of 
the spectral bands, for example, if they are close it is expected 
that the number of perceived colors is lower than if they are 
apart. 

The work presented here is of a computational nature and 
its generalization to practical applications must be approached 
with care. In particular, the methodology to estimate the gamut 
uses the CIELAB space which is known for its non-
uniformities [33]. However, they may be explored with 
advantage in practical illumination when large chromatic 
diversity may be important. 
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