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The number of colors discernible by normal trichromats has been estimated for the idealized object-color solid.
How well these estimates apply to natural scenes is an open question, as it is unknown how much their colors
approach the theoretical limits. The aim of this work was to estimate the number of discernible colors based on
a database of hyperspectral images of 50 natural scenes. The color volume of each scene was computed in the
CIELAB color space and was analyzed using the CIEDE2000 color-difference formula. It was found that the
color volume of the set of natural scenes was about 30% of the theoretical maximum for the full object-color
solid, and it corresponded to a number of about 2.3 million discernible colors. Moreover, when the lightness
dimension was ignored, only about 26,000 (1%) could be perceived as different colors. These results suggest
that natural stimuli may be more constrained than expected from the analysis of the theoretical limits.
© 2008 Optical Society of America
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1. INTRODUCTION
The chromatic richness experienced by observers with
normal color vision suggests the perception of an enor-
mously large number of color nuances, a notion that
seems to be supported by some textbooks that often quote
the number of 10 million [1,2], a figure with an unclear
origin [3]. Yet there are two main constraints limiting the
number of colors that can be perceived in natural scenes:
the light reflected by natural surfaces is not arbitrary in
its spectral composition, and our ability to discriminate
similar light stimuli is limited. In spite of significant re-
search addressing this classical issue [4–9], the question
of how many colors can be discriminated by the human
eye in natural scenes still has no definitive answers.

Estimates of the number of discernible colors perceived
in complex scenes or, more generally, in natural environ-
ments provide information about the diversity of the
physical stimuli and about the visual processing produc-
ing distinguishable perceptions. In particular, comparing
the maximum theoretical chromatic diversity with that
actually experienced in natural scenes provides a mea-
sure of how much the real world approaches the theoret-
ical limits. In practice, it may be useful to measure the
color rendering properties of illuminants [8,10–12], to ac-
cess the visual effects of a colored lens [13], to compare
normal color vision with defective color vision [14], and to
evaluate the color gamut of display devices [3,15,16].

The set of all possible colors normal trichromats can
see is represented by a volume in color space limited by
the colors of monochromatic lights and embodies color
sensations resulting from a variety of stimuli [17]: direct
observation of light sources, highlights, fluorescence, dif-
fuse reflection (or transmittion), and other physical pro-
cesses producing colors, e.g., Rayleigh or Mie scattering
responsible for the blue of sky and the white of clouds, re-
spectively [18,19], and amazing optical effects produced

by natural photonic structures, such as the brightly col-
ored birds and insects [20]. The subset of colors arising
only by reflection (or transmittion) are the object colors
[21] and form a subvolume of the color space, the object-
color solid, delimited by the optimal colors. The theory
underlining the spectral properties of optimal colors was
developed early in the 20th century [9], and the corre-
sponding loci were computed in a color diagram [22,23]
and were recalculated later in the I.C.I. 1931 coordinate
system by D. L. MacAdam [4,5] to obtain the MacAdam
limits. The full characterization of these limits is still a
matter of interest, for example, in lighting where they can
be useful in the characterization of the color rendering
properties of light sources [8,10].

The number of colors perceived by normal trichromats
was initially estimated using chromatic discrimination
data [6,7]; recent estimates [3,8,10,24] take advantage of
the advances in specification of color differences and are
based on representations of the theoretical object-color
solid in approximate uniform color spaces, e.g., CIELAB
[25], DIN99 [26], and CIECAM [27]. The estimates for the
theoretical limit vary over a considerable range depend-
ing on the assumptions made, but a number close to 2
million for the entire theoretical object-color solid is com-
mon to several reports [3,8]. This number was obtained by
computing the volume of the object-color solid in CIELAB
with the implicit assumption of just noticeable cubic sub-
volumes, which corresponds to a coarse approximation.

How realistic are these estimates? The reflectance spec-
tra corresponding to the optimal colors do not actually oc-
cur in nature: they are spectral reflectance functions hav-
ing only values of either zero or unity [9]; how much real
colors approach this idealized limit is still uncertain.

The color gamut of real colors has been investigated us-
ing large sets of colored samples containing colors of
paints, flowers, plastics, and inks, among others [28], and
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in spite of the limitations of the sampling methodology
[29], the results suggest that the gamut of real colors is
much smaller than that of the optimal colors. Measure-
ments taken directly from natural scenes [30,31] over-
come some limitations but were limited by the sampling
size.

The purpose of this work was to estimate the number of
discernible colors that can be perceived in natural scenes
based on a database of hyperspectral images of 50 natural
scenes from rural and urban environments. Hyperspec-
tral images have been used in the characterization of the
spectral and chromatic properties of natural scenes
[31–35], artistic paintings [11,12], and other valuable ob-
jects [36], and given their unique property of combining
spectral information with spatial information at a reso-
lution comparable to that of the human eye, they are the
ideal data source for the problem addressed here. The
present study took into account a large sample of colors
measured in natural conditions and therefore represents
a novel contribution to the analysis of the chromatic di-
versity of the natural world. However, like other studies
on discernible colors, the estimations are constrained by
the limitations of the color vision models applied and by
the natural samples analyzed. At present, there are no ac-
cepted models predicting color vision and color discrimi-
nation in natural scenes, where the illumination has a
complex spatial distribution and the background and size
of the objects vary considerably. Thus, this study applied
the models available, which are optimized for samples
viewed in ideal laboratory conditions, that is, in specific
backgrounds and under uniform illumination. On the
other hand, it is not possible to sample the natural word
with generality, and the study was based on a limited, al-
though large, sample of natural scenes.

2. METHODS
A database with hyperspectral data from 50 natural
scenes acquired in the Minho region of Portugal was ana-

lyzed. Scenes were of rural and urban environments and
contained both close-ups and distant views. Rural scenes
contained natural elements such as dark terrain, trees,
grass, ferns, flowers, rocks, and stones, and urban scenes
contained buildings and painted or treated surfaces. For a
more detailed description of the database, see Foster et al.
[33] and Foster et al. [37]. Figure 1 represents the thumb-
nails of the complete set of 50 scenes analyzed in this
study.

The hyperspectral images were obtained with a hyper-
spectral imaging system with a low-noise Peltier-cooled
digital camera capable of a spatial resolution of 1344
!1024 pixels (Hamamatsu, Model C4742-95-12ER,
Hamamatsu Photonics K. K., Japan) and with a fast tun-
able liquid-crystal filter (Varispec, Model VS-VIS2-10-HC-
35-SQ, Cambridge Research & Instrumentation, Inc.,
Massachusetts) mounted in front of a lens, with an infra-
red blocking filter. Each image was acquired from
400 nm to 720 nm in 10 nm steps. The lens had a 75 mm
focal length, the angle of view was about 6 deg, and in
these conditions the system delivered a spatial resolution
close to that of the human eye.

Hyperspectral data were calibrated using the spectrum
of the light reflected from a gray surface present in the
scene measure with a telespectroradimeter (SpectraColo-
rimeter, PR-650, PhotoResearch Inc., Chatsworth, Cali-
fornia) just after image acquisition. The spectral radiance
from each pixel of the image was then obtained after cor-
rections for dark noise, spatial nonuniformities, stray
light, and chromatic aberrations (for more details on
these corrections see Foster et al. [33]). Notice that in the
calibration procedure, to obtain the spectral radiance, no
assumptions about the illuminant on the scene were
made, and therefore the data reflect the spatial variations
of the illumination across the scene.

Spectral radiances were converted into tristimulus val-
ues for the CIE 1931 standard colorimetric observer and
then converted into the CIELAB color coordinates

Fig. 1. (Color online) Thumbnails of the 50 scenes analyzed in this study.
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!L* ,a* ,b*". The reference illuminant for these computa-
tions was obtained from the gray reference surface
present in the scene, and the white object was assumed
the perfect reflecting diffuser. Figure 2 shows, as illustra-
tion, the CIELAB representation of three scenes of the da-
tabase. For clarity, only a fraction of the data points are
represented in the graphs. In the figure some points show
values of L* larger than 100 and corresponded to high-
lights; these points represented about 3% of all data and
were excluded from further analysis.

The general principle to estimate the number of dis-
cernible colors was to segment the color space in just no-
ticeable subvolumes and to count the number of these
containing the color representation of at least one pixel
[3,8]. Because the CIELAB color-difference formula is

known to represent only approximately perceived differ-
ences [27,38–41], the estimations were carried out using
the CIEDE2000 color-difference formula [42,43] with the
parametric factors kL, kC, and kH of the CIEDE2000 for-
mula set to one [25], the default values [44]. Specifically, a
color was first selected at random from the image. Then
all colors with a color difference equal to or less than 0.3
CIEDE2000 units in relation to this reference color were
counted as one discernible color; this procedure was re-
peated until all colors of the image were considered. To
avoid double counting, in each iteration the corresponding
colors were removed from the sample. This procedure
assumes that the discriminable difference is 0.6
CIEDE2000 units [26,45] and is robust against the ran-
dom selection of the initial color: estimates based on dif-

Fig. 2. (Color online) Examples of three scenes of the database. On the left are represented the color images, and on the right the
CIELAB representation of each of the scenes. For clarity, only a fraction of the data points are represented in each of the graphs. The
numbers indicate the number of discernible colors estimated for each scene using the CIEDE2000 color-difference formula, and the num-
bers in parentheses indicate the number of colors estimated ignoring the lightness dimension. The top picture represents a scene with a
number of discernible colors less than the average, the picture in the middle a scene with a number of discernible colors close to the
average, and the picture in the bottom a scene with a number of discernible colors larger than the average.

2920 J. Opt. Soc. Am. A/Vol. 25, No. 12 /December 2008 Linhares et al.



ferent starting points have a standard error of less than
0.1% of the average value. Notice that the procedure does
not segment the space into a regular array of spheres
with equal empty spaces in between, but rather an irregu-
lar packing of spheres is obtained where all colors are
within a sphere.

To obtain an estimate of the number of colors discern-
ible on the basis of nuances in hue and chroma, the com-
putations described in the preceding paragraph were re-
peated ignoring the lightness component L*, and
therefore spheres were replaced with circles.

The color volume of natural scenes was obtained by
segmenting the corresponding color space in unitary cubic
subvolumes and by counting the number of these contain-
ing the color representation of at least one pixel [3,8]. For
comparison with natural scenes, the total volume of the
object-color solid was also estimated as follows. First, the
optimal colors were computed for L* in the range 99–1,
with spectral sampling of 0.1 nm in the range
380 nm–780 nm, using the CIE 1931 XYZ color matching
functions linearly interpolated for 0.1 nm and assuming
that the rendering illuminant was CIE standard illumi-
nant C. This illuminant was selected for comparison with
previous studies. The volume enclosed by the optimal col-
ors was then estimated using linear interpolation.

3. RESULTS
Figure 3 shows on the left the color gamut for the 50
scenes represented in the CIELAB !a* ,b*" diagram for
L*=50; on the right it shows the color volume for L*

"100 projected into the same diagram. For comparison,
optimal colors and the gamut obtained with the 4089
samples tabulated by M. Pointer [28] are also represented
assuming that the rendering illuminant was CIE stan-
dard illuminant C. These samples comprise the Matte
Munsell Atlas, The Royal Horticiltural Society Colour
Chart, pigments from paints, printing inks, colored paper,

plastics, and textiles. The data for the optimal colors rep-
resented on the right were obtained by superimposing the
areas corresponding to all lightness levels and by select-
ing the limiting points of the resulting region.

For L*=50 the gamut of colors from natural scenes is
considerable smaller than for optimal colors, and it is
similar, although not coincident, to that determined by M.
Pointer. For other lightness levels (not represented) the
patterns of results present similar features.

The projection of the color volume in the CIELAB
!a* ,b*" diagram produces an extended color gamut, but
similar properties are observed; that is, the gamut of
natural colors is smaller than for optimal colors and simi-
lar to that determined by M. Pointer. Notice that a couple
of data points lay slightly outside the limits of the optimal
colors; these points corresponded to colors produced by
processes other than reflection (or transmission) and
therefore are not object colors.

The total volume of the object-color solid in CIELAB
was found to be 2.22 million, that is, close to the 2.28 mil-
lion estimates by M. Pointer and G. G. Attridge [3] and
the 2.05 million by Martínez-Verdú et al. [8]. On the other
hand, the color volume occupied by the natural scenes
was only 689,734, that is, about 31% of the limiting theo-
retical volume.

Figure 4 shows on the left the distribution of the num-
ber of discernible colors for the set of 50 scenes. The solid
curve represents a Gaussian fit to the data. Table 1 shows
the average number of discernible colors across the 50
scenes obtained for the two conditions analyzed. As illus-
tration, the top scene shown in Fig. 2 represents an ex-
ample of a scene with a number of discernible colors be-
low the average, the middle scene an example with a
number of discernible colors about the average, and the
bottom scene an example of a scene with a number of dis-
cernible colors above the average. The number of colors is
represented in each case, and in parenthesis is repre-
sented the number of colors obtained when ignoring L*.

Fig. 3. Color gamut represented in the CIELAB !a* ,b*" diagram corresponding to the colors of the 50 scenes of the database for light-
ness level L*=50 (left) and the projection on that diagram of the colors corresponding to L*"100 (right). For comparison, the optimal
colors and the gamut obtained with 4089 samples tabulated by M. Pointer [28] are also represented assuming samples illuminated by
CIE standard illuminant C.
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An average value of 274,736 discernible colors was ob-
tained, that is, roughly 1 color for every 5 pixels of the im-
ages. The values obtained when ignoring L* were about
4% of the total number. Thus, the number of different col-
ors that can be perceived are largely due to lightness
variations and only a small fraction differ in hue and
chroma.

Figure 4 shows on the right the total number of dis-
cernible colors expressed as a function of the total number
of scenes considered in the analysis. The smooth curve
represents an exponential fit to the data of the form
N! !1−e−kn", where n represents the number of scenes in
the analysis and N and k were adjustable parameters.
Table 1 shows the asymptotic values N obtained for the
two conditions analyzed.

The number of colors seems to converge to an
asymptotic value, suggesting that the sample of scenes is
representative of the population. The number of colors ob-
tained when ignoring L* was about 1.1% of the total num-
ber of colors, which is a smaller fraction than that ob-
tained for individual scenes and may indicate that there
is more redundancy in hue and chroma than in lightness.

4. DISCUSSION
The main contribution of this work was to estimate for
what we believe to be the first time the number of discern-

ible colors based on hyperspectral data of natural scenes
and to compare the corresponding color volume with that
of the theoretical limit of object colors. It was estimated
that the total number of colors that can be discriminated
in natural scenes is about 2.3 million and that this num-
ber corresponds to a volume of about 30% of the theoret-
ical maximum. A number close to 2 million was reported
previously for cubic just noticeable volumes [3,8] but was
based on the idealized object-color solid and should not be
confounded with the estimate obtained here.

Why is the gamut of the natural colors much smaller
than for object colors? A possible interpretation is that
natural spectral reflectances are considerably different
from the idealized ones and, as a result, colors obtained in
nature are more constrained than the idealized object-
color solid, suggesting that a significant number of pos-
sible colors do not actually occur or are very rare.

If discrimination was assumed to be based only on the
attributes of hue and chroma, the estimate obtained was
about 1.1% of the total number. For individual scenes,
however, this relationship was higher, about 4%, suggest-
ing that there is more redundancy in the hue and chroma
than in lightness.

How representative is our database of the chromatic
properties of the natural world? Clearly, there are limita-
tions in the colors represented in the database. For ex-
ample, it is well know that flowers with very saturated
colors can be encountered in tropical environments [46],
and these are unlikely to be well represented in databases
of Mediterranean or Atlantic regions. Nevertheless, the
fact that the number of colors obtained is practically
stable as the number of scenes considered increased
above 30 suggests that the 50 scenes selected may contain
a good sample of all natural colors of that region.

The hyperspectral data were collected under a range of
natural illuminants and, strictly, cannot be compared
with data for the object-color solid illuminated by a single
illuminant. Yet studies investigating the variation of the
number of colors for the object-color solid as a function of
the spectral composition of the illuminant [8] show that

Table 1. Estimates Obtained Using the Color-
Difference Formula CIEDE2000: Average Number

of Discernible Colors for the Set of 50 Scenes
Analyzed and Asymptotic Values Obtained from

the Exponential Fits

Parameter !L* ,a* ,b*" !a* ,b*"

Average number
of discernible colors

274,736 (92,976) 11,276 (3,232)

Asymptotic values 2,275,698 26,256

aData based on the three dimensions !L*,a*,b*" and just on !a*,b*". Values in
parenthesis indicate the sample standard deviation.

Fig. 4. (Left) Distribution of the number of discernible colors for the set of 50 scenes analyzed. Estimates based on the CIEDE2000
formula. The solid curve represents a Gaussian fit to the data. (Right) Total number of discernible colors as a function of the number of
scenes considered in the analysis. Data also based on the CIEDE2000 formula. The smooth curve represents an exponential fit to the
data.
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the variations for daylights are small, and therefore the
effect is unlikely to be large. The spectral composition of
the illuminant in natural scenes also varies across the
scene, and the application of the color-difference formulas
in these nonideal conditions will produce only approxi-
mate results, but it is unlikely to influence the results
critically.

Strictly, CIEDE2000 formulas apply only for uniform
stimuli under well-defined adaptation conditions and do
not describe with precision more complex conditions. Dis-
crimination even with uniform samples depends on adap-
tation [15,47] and, in images with complex chromatic
structures, chromatic discrimination is determined by
several parameters such as the color distribution in the
images, the adaptation state of the observers, memory
color, and chromatic textures, among others [30,48–50].
The spatial structure of the images also influences dis-
crimination [51], and the S-CIELAB [44,52] metric is an
attempt to extend the CIELAB to colored images; how-
ever, it only quantifies how accurate the reproduction of a
color image is against the original and cannot be used
here. Unfortunately, there are no available models taking
all these effects into account, and our method is the one
possible approach at present. Nevertheless, because the
main effects are already considered, it seems unlikely
that more complete models will change dramatically the
order of magnitude of the figures obtained.

The results of this work imply that the visual system
has to deal with less variety of colors than predicted from
the analysis of the theoretical limits. Therefore, natural
stimuli may, in some tasks, be thought as less demanding
to the visual system than expected, for example, in color
constancy, which is known to be less efficient with satu-
rated colors [53]. On the other hand, the results suggest
that the visual system may not use fully the available
range for chromatic discrimination, which may represent
a limitation in other tasks.

ACKNOWLEDGMENTS
This work was supported by the Centro de Física of
Minho University, Braga, Portugal, and by the Fundação
para a Ciência e a Tecnologia (grants POSC/EEA-SRI/
57554/2004 and CONC-REEQ/443/EEI/2005). We are
grateful to Marta M. D. Ramos and Ricardo M. Ribeiro for
the use of their computer clusters. João M. M. Linhares
was supported by grant SFRH/BD/35874/2007. We thank
David H. Foster and Kinjiro Amano for the use of the hy-
perspectral database.

REFERENCES
1. D. B. Judd and G. Wyszecki, Color in Business, Science and

Industry, 3rd ed. (Wiley, 1975).
2. R. W. G. Hunt, Measuring Colour, 3rd ed. (Fountain Press,

1998).
3. M. R. Pointer and G. G. Attridge, “The number of

discernible colours,” Color Res. Appl. 23, 52–54 (1998).
4. D. L. MacAdam, “Theory of the maximum visual efficiency

of colored materials,” J. Opt. Soc. Am. 25, 249–252 (1935).
5. D. L. MacAdam, “Maximum visual efficiency of colored

materials,” J. Opt. Soc. Am. 25, 316–367 (1935).
6. D. L. MacAdam, “Note on the number of distinct

chromaticities,” J. Opt. Soc. Am. 37, 308–309 (1947).

7. D. Nickerson and S. M. Newhall, “A psychological color
solid,” J. Opt. Soc. Am. 33, 419–422 (1943).

8. F. Martinez-Verdu, E. Perales, E. Chorro, D. de Fez, V.
Viqueira, and E. Gilabert, “Computation and visualization
of the MacAdam limits for any lightness, hue angle, and
light source,” J. Opt. Soc. Am. A 24, 1501–1515 (2007).

9. E. Schrödinger, “Theorie der pigmente von größter
leuchtkraft,” Ann. Phys. 62, 603–622 (1920).

10. E. Perales, F. Martinez-Verdu, V. Viqueira, M. J. Luque,
and P. Capilla, “Computing the number of distinguishable
colors under several illuminants and light sources,” in
Third IS&T European Conferences on Colour Graphics,
Imaging and Vision (Society for Imaging Science and
Technology, 2006), pp. 414–419.

11. P. D. Pinto, J. M. M. Linhares, and S. M. C. Nascimento,
“Correlated color temperature preferred by observers for
illumination of artistic paintings,” J. Opt. Soc. Am. A 25,
623–630 (2008).

12. P. D. Pinto, J. M. M. Linhares, J. A. Carvalhal, and S. M. C.
Nascimento, “Psychophysical estimation of the best
illumination for appreciation of Renaissance paintings,”
Visual Neurosci. 23, 669–674 (2006).

13. J. M. M. Linhares, P. D. Pinto, M. A. Aldaba, S. M. C.
Nascimento, D. H. Foster, and K. Amano, “Viewing natural
scenes through colored filters,” Invest. Ophthalmol. Visual
Sci. 46, E-Abstract 4686 (2005).

14. J. M. M. Linhares, P. D. Pinto, and S. M. C. Nascimento,
“The number of discernible colors perceived by dichromats
in natural scenes and the effects of colored lenses,” Visual
Neurosci. 25, 493–499 (2008).

15. J. Krauskopf and K. Gegenfurtner, “Color discrimination
and adaptation,” Vision Res. 32, 2165–2175 (1992).

16. S. Wen, “Display gamut comparison with number of
discernible colors,” J. Electron. Imaging 15, 043001 (2006).

17. R. J. D. Tilley, Colour and Optical Properties of Materials:
an Exploration of the Relationship between Light, the
Optical Properties of Materials and Colour (Wiley, 2000).

18. K. Nassau, The Physics and Chemistry of Color. The Fifteen
Causes of Color (Wiley, 1983).

19. K. Nassau, Color for Science, Art and Technology (Elsevier
Science B. V., 1998).

20. P. Vukusic and J. R. Sambles, “Photonic structures in
biology,” Nature 424, 852–855 (2003).

21. G. Wyszecki and W. S. Stiles, Color Science: Concepts and
Methods, Quantitative Data and Formulae, 2nd ed. (Wiley,
1982).

22. R. Luther, “Aus dem Gebiet der Farbreizmetrik,” Zh. Tekh.
Fiz. 8, 540–558 (1927).

23. N. D. Nyberg, “Zum aufbau des farbenkörpers im raume
aller lichtempfindungen,” Z. Phys. A 52, 406–419 (1929).

24. M. R. Pointer, “On the number of discernible colours,” Color
Res. Appl. 23, 337–337 (1998).

25. CIE, Colorimetry, CIE Publ. 15:2004 (Commission
Internationale de L’Eclairage, 2004).

26. G. Cui, M. R. Luo, B. Rigg, G. Roesler, and K. Witt,
“Uniform colour spaces based on the DIN99 colour-
difference formula,” Color Res. Appl. 27, 282–290 (2002).

27. M. D. Fairchild, Color Appearance Models (Wiley, 2005).
28. M. R. Pointer, “The gamut of real surface colours,” Color

Res. Appl. 5, 145–155 (1980).
29. M. R. Pointer, “Request for real surface colours,” Color Res.

Appl. 27, 374–374 (2002).
30. M. A. Webster and J. D. Mollon, “Adaptation and the color

statistics of natural images,” Vision Res. 37, 3283–3298
(1997).

31. S. M. C. Nascimento, F. P. Ferreira, and D. H. Foster,
“Statistics of spatial cone-excitation ratios in natural
scenes,” J. Opt. Soc. Am. A 19, 1484–1490 (2002).

32. J. M. M. Linhares, “Estimating chromatic diversity from
hyperspectral images,” M.Phil. thesis (University of
Manchester, 2005).

33. D. H. Foster, K. Amano, S. M. C. Nascimento, and M. J.
Foster, “Frequency of metamerism in natural scenes,” J.
Opt. Soc. Am. A 23, 2359–2372 (2006).

34. S. M. C. Nascimento, D. H. Foster, and K. Amano,
“Psychophysical estimates of the number of spectral-

Linhares et al. Vol. 25, No. 12 /December 2008 /J. Opt. Soc. Am. A 2923



reflectance basis functions needed to reproduce natural
scenes,” J. Opt. Soc. Am. A 22, 1017–1022 (2005).

35. J. M. M. Linhares, S. M. C. Nascimento, D. H. Foster, and
K. Amano, “Chromatic diversity of natural scenes,”
Perception 33, 65–65 (2004).

36. C. Fischer and I. Kakoulli, “Multispectral and
hyperspectral imaging technologies in conservation:
current research and potential applications,” Rev. Conserv.
3–12 (2006).

37. D. H. Foster, S. M. C. Nascimento, and K. Amano,
“Information limits on neural identification of colored
surfaces in natural scenes,” Visual Neurosci. 21, 331–336
(2004).

38. R. S. Berns, D. H. Alman, L. Reniff, G. D. Snyder, and M.
R. Balononrosen, “Visual determination of suprathreshold
color-difference tolerances using probit analysis,” Color
Res. Appl. 16, 297–316 (1991).

39. M. R. Luo and B. Rigg, “Chromaticity-discrimination
ellipses for surface colors,” Color Res. Appl. 11, 25–42
(1986).

40. K. Witt, “Parametric effects on surface color-difference
evaluation at threshold,” Color Res. Appl. 15, 189–199
(1990).

41. K. Witt, “Geometric relations between scales of small colour
differences,” Color Res. Appl. 24, 78–92 (1999).

42. M. R. Luo, G. Cui, and B. Rigg, “The development of the
CIE 2000 colour-difference formula: CIEDE2000,” Color
Res. Appl. 26, 340–350 (2001).

43. M. R. Luo, G. Cui, and B. Rigg, “Further comments on
CIEDE2000,” Color Res. Appl. 27, 127–128 (2002).

44. G. M. Johnson and M. D. Fairchild, “A top down description
of S-CIELAB and CIEDE2000,” Color Res. Appl. 28,
425–435 (2003).

45. P. L. Sun and P. Morovic, “Inter-relating colour difference
metrics,” in Tenth Color Imaging Conference: Color Science
and Engineering System, Technologies, Applications
(Society for Imaging Science and Technology, 2002), pp.
55–60.

46. B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-
Dominique, and J. D. Mollon, “Fruits, foliage and the
evolution of primate colour vision,” Philos. Trans. R. Soc.
London, Ser. B 356, 229–283 (2001).

47. A. J. Zele, V. C. Smith, and J. Pokorny, “Spatial and
temporal chromatic contrast: effects on chromatic
discrimination for stimuli varying in L- and M-cone
excitation,” Visual Neurosci. 23, 495–501 (2006).

48. T. Hansen and K. R. Gegenfurtner, “Chromatic and
luminance edges in natural scenes,” Perception 36,
193–193 (2007).

49. T. Hansen, M. Olkkonen, S. Walter, and K. R.
Gegenfurtner, “Memory modulates color appearance,” Nat.
Neurosci. 9, 1367–1368 (2006).

50. T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic
discrimination of natural objects,” J. Vision 8, 1–19 (2008).

51. M. A. Aldaba, J. M. M. Linhares, P. D. Pinto, S. M. C.
Nascimento, K. Amano, and D. H. Foster, “Visual
sensitivity to color errors in images of natural scenes,”
Visual Neurosci. 23, 555–559 (2006).

52. X. Zhang, D. A. Silverstein, J. E. Farrell, and B. A.
Wandell, “Color image quality metric S-CIELAB and its
application on halftone texture visibility,” in COMPCON97
Digest of Papers (IEEE, 1997), pp. 44–48.

53. S. M. C. Nascimento, V. M. N. de Almeida, P. T. Fiadeiro,
and D. H. Foster, “Minimum-variance cone-excitations
ratios and the limits of relational color constancy,” Visual
Neurosci. 21, 337–340 (2004).

2924 J. Opt. Soc. Am. A/Vol. 25, No. 12 /December 2008 Linhares et al.


